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It is shown that no consistent classical interpretation of quantum mechanics 
was given by Edward Nelson in his paper of 1966: "Derivation of the Schrr- 
dinger equation from Newtonian mechanics." 

1. INTRODUCTION 

From time to time the ideas of quantum mechanics are challenged by 
attempts at reinstalling the classical interpretation. One of the best known 
of those attempts was presented by Nelson (1966). As found in that paper 
there is a close formal analogy between the time evolution of a Schr6- 
dinger wave packet and a classical stochastic process. The analogy is found 
by considering a hypothetical classical point particle whose position s  is 
a random variable satisfying the following stochastic differential equa- 
tions: 

(at>O) 

d ~ ( t ) = [ 6 ( ~ , t ) - f f ( ~ , t ) ] d t + d ~ *  (dr <0 )  (1.1) 

The motion is assumed to take place in a classical external potential 
V(~ ,  t). The quantities g(~, t) and ff(~, t) are the fields of drift and osmotic 
velocities and d~ and d~* are random position shifts due to certain Wiener 
processes. Denoting the probability density for ~(t) by O(x, t) and assuming 
that the stochastic motion is "'in equilibrium" one shows that ff(~,t)= 
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m 

(h/2m)V[lnp(Y,t)]. Postulating, as a dynamical principle, Newton's second 
law for the mean values of force and acceleration, and moreover, assuming 
that ~3(Y, t) has a potential (h/m)S(Y, t) one proves (Nelson, 1966) that the 
complex function q'(~, t) = p(Y, t)l/2exp[iS(Yc, t)] fulfills the Schrrdinger 
wave equation with the external potential V(~, t). As suggested by Nelson, 
this means that the "wave function" of a Schrrdinger particle is just a 
complex representation for the real quantities ff(~,t) and 6(Y,t) char- 
acterizing a classical random motion. Nelson concludes that the transition 
to quantum mechanics around 50 years ago was unnecessary. The true 
physical object which appears in the known quantum mechanical experi- 
ments might as well be interpreted as a classical point particle undergoing 
a generalized random motion. The formal aspects of Nelson's paper are so 
attractive that they, somehow, overshadow its physical content. After 
looking at that content more closely, however, we have found the physical 
ideas in Nelson (1966) so elusive that the very statement about the classical 
reinterpretation must be questioned. 

2. POINT OR FIELD? 

The first question to ask is the fundamental one. What is the physical 
object in Nelson's theory? According to Nelson himself his formalism 
describes simply a classical point particle undergoing a generalized 
Brownian motion with no friction. A statement at the end of Section III of 
his paper makes clear, however, that the "point particle" possesses some 
fieldlike degrees of freedom. One can read (Nelson, 1966, p. 1082): 

The state of the particle at time t o is described by its position ~(t0) at time to, the osmotic 
velocity ff at time to, and the current velocity ~5 at time t 0. Notice that if(.2, to) and 6(~, to) must 
be given for all values of ff and not just for ~(t0). 

As a consequence, in the Nelson equations of Brownian motion there 
appears a complex function ~(~,  t) [simply related to if(Y, t) and 15(~, t)]. A 
question thus arises, of what this function physically means. What are the 
"drift and osmotic velocities" ~7(~, t) and 6(~, t)? Are they of external origin 
[as in genuine Ornstein-Uhlenbeck theory (Chandrasekhar et al., 1954)] or 
are they, somehow, created by the random motion itself? Depending on 
the answer to this question, two physical interpretations of Nelson's 
scheme might be attempted. 

2.1. Trajectory Interpretation. The only physical system behind the 
Nelson formalism is just a classical point particle. The quantities p, u, v, 
and S have no physical reality of their own. They are just "painted" by the 
random trajectories. The stochastic process develops by constructing its 
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own ~5(s t) and ff(s t) [or equivalently, 'I'(K, t)] which, in turn, serve as an 
initial condition for the further development of the process. 

2.2 Field lnte~'pretation. The quantities ff(Y,t) and g(2,t) are not 
created by the random motion, but they represent an external reality in 
which the motion takes place (as in the original Ornstein-Uhlenbeck 
theory of Brownian motion). Consistently, 'I'(Y,t) is a physical field inter- 
vening between the external potential and the point particle. This field is 
conditioned by V(2, t) (via the Schr6dinger equation) and it conditions, in 
turn, the Brownian trajectory by creating the fields of osmotic and drift 
velocities which the random motion must obey. 

3. FAILURE OF THE TRAJECTORY INTERPRETATION 

If the first interpretation is adopted, one must still ask whether the 
quantities ~ and g (and therefore "I') are created by each single "point 
particle" or if they are defined only for a wider ensemble? Following 
traditions of a statistical theory one would rather like to interpret 'Is in 
terms of an ensemble [so that p(2, t) would mean an average density of the 
ensemble particles and if(2, t), g(2, t) and S(2, t) would be related to the 
particle currents]. Then, however, the appearance of ff(~, t) and ~5(~, t) [and 
consistently, of O(~, t) and S(2, t)] in the equations of motion (1.1) for each 
single trajectory would mean that one does not have a true statistical 
ensemble (i.e., an ensemble composed of independent particles) but rather 
a cloud of mutually interacting "'mass points" so that the form of each 
Brownian trajectory is affected by the whole rest of the Brownian trajecto- 
ries. Such phenomena are indeed observed in nonlinear diffusion processes 
where many diffusing particles interact by modifying the medium in which 
they propagate [for diffusing clouds dense enough this can even lead to the 
creation of interference patterns (Turski, 1975)]. However, the problem 
with the quantum mechanical wave function is that, somehow, it must be 
valid for each single propagation act, even if it is well separated from the 
other propagation acts. This has been convincingly shown by the Fabri- 

k a n t  experiment (Biberman et al., 1949). [The chance that there was still 
some particle clustering overlooked in that experiment is negligible. See 
also Pfleegor and Mandel (1967) and Faget and Fert (1957) and also the 
footnote on p. 130 in Jammer (1974)]. Hence, the effects observed in 
quantum physics cannot be explained by assuming an interaction between 
many trajectories of different '"mass points." A question now arises, what 
is the sense of drift and osmotic velocities if there is only one trajectory? Is 
it, perhaps, so that in Nelson's scheme each observed motion of the point 
particle (real trajectory) is affected by some collection of its own virtual 
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alternatives (ghost trajectories)? However, the idea of a physical process 
interacting with its virtual alternatives would no longer be classical. 1 One 
might think that u, v, O, and S concern a single trajectory but have an 
expectation meaning [so that, for instance, p(Y, t) is the probability density 
for the position of the Brownian particle). Then, however, it would be 
strange that the probability density p(s to) enters into the description of 
the state of a "mass point" together with its coordinates s This would 
suggest that the probability distribution O(~,to) remains essential even 
though one already knows the position s of the particle. One might 
reply that O(x, to) and 2(t0) represent just two different levels of informa- 
tion: while Y(t0) is precise information possessed by a well-informed 
observed, O(2,to) is merely average information possessed by a less 
oriented observer. Then, however, it is difficult to understand, how the 
ignorance of the second observer can affect the further development of the 
Brownian motion in th e eyes of the first observer. And it does in Nelson 
(1966), because q(Y, t0) influences the form of the Brownian trajectories 
which emerge from 2(t0). It becomes obvious that in the frame of interpre- 
tation (A) there is only one possibility left: that the motion of the point 
particle is a process with memory and is conditioned by its past. In this 
case Y(t0) could mean the actual position of the point, whereas 't'(s 
could represent an "averaged memory" of its past drifting. This, of course, 
would signify that we do not have here a true Markov process and it would 
lead to a nontrivial problem of the reinterpretation of the whole Nelson 
scheme. However, one can show that even such a generalized interpreta- 
tion (A) would not be sufficient. A counterargument emerges from the 
paper of Albeverio and Hoegh-Krohn (1974). Because of its further im- 
plications this argument will be discussed in detail. 

Let us start by pointing out that Nelson's scheme works exclusively 
with the "equilibrium states" for which the probability density for the 
random variable ~(t) is a priori assumed to conform to a certain 
equilibrium distribution: q'(~,t)=[p(~,t)l 2. The subsequent arguments 
about the equivalence of Nelson's theory to the orthodox quantum 
mechanics are valid only for such states. (The properties of the non- 
equilibrium states in Nelson's theory are left somewhat obscure.) It is an 
essential problem, however, whether each single Brownian trajectory in- 
deed tends to create an "equilibrium state." It is also a problem, whether 
every Schr6dinger state can be created in that way. As follows from 
Albeverio and Hoegh-Krohn (1974) this is not always so. A typical 

l i t  would also be outside interpretation (A). The hypothetical "ghost trajectories," however 
unobservable, would nevertheless form a sort of "field" intervening in between the real 
trajectory if(t) and the external potential V(ff, t). 



Nelson-Brown Motion 243 

difficulty arises if the wave function 'Is vanishes on some surfaces. The 
equations (1.1) for the random trajectory do not then permit the 
"Brownian particle" to penetrate, with nonvanishing probability, the nodal 
surface xt' =0.  This creates an inconsistency between the behavior of the 
single trajectory and the assumed equilibrium state. As an example take 
�9 I, =,t ,  0 to be a spherically symmetric wave function, which is stationary 
and vanishing on a sphere r = r  o (for example, 'Po may be one of the 
eigenstates of the hydrogen atom). Then ~t'0= xt' l -~-xtt2, where "I" 1 and q~2 
are the two components of q'o inside and outside the sphere r = r  o (cf. 
Figure 1). Now, consider a hypothetical Brown-Nelson motion which is 
supposed to reproduce the quantum mechanical pure state 'Is o. If the 
motion started inside (outside) the sphere r = r o, it continues inside (out- 
side) with probability 1. Hence, the random motion can either create only 
the component x~t 1 ( b u t  then q~2 remains empty) or only xIt 2 (but then xI' l is 
nonexistent). Consistently, every statistical ensemble of Brown-Nelson 
trajectories should split into two subensembles: those that reproduce xI" 1 
and those that reproduce xI' 2. This means that not even a statistical 
ensemble of "Brownian particles" should be able to imitate the pure state 
xI' 0. This should be detectable by arranging any experiment in which the 
interference between the components q'~ and x~t 2 would intervene: the 
inability of the Brown-Nelson trajectories to "construct" the whole of 
90=xI' l  +x I" 2 should then be felt as the lack of the interference effects. 
Thus, the trajectory interpretation of xI' 0 bears a certain intrinsic contradic- 
tion: starting from the assumption that an ensemble of Brownian trajecto- 
ries "creates" the pure state ~'o one ends up with the conclusion that the 
state, in fact, is mixed. 

~o(r) 

Fig. I. 

r 
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The difficulty of nodal surfaces has been noticed by Nelson but it was 
underestimated by him. Nelson (1966) suggests that the undesired effects 
occur just as an exception, for 'it 0 having a nodal surface but they 
disappear if ' t '  o is slightly perturbed to become a modified wave function 
�9 ~ (e~0) ;  ,I,~ having no nodal surfaces for e ~ 0 ,  't'~--->xt' 0 for e---~0. 
However, the right conclusion f rom this argument might be just the 
opposite. For 9 = ' t '  0 there are physical differences between the hypotheti- 
cal ensemble of Brown-Nelson  trajectories and the corresponding ensem- 
ble of Schr6dinger particles. By continuity arguments they cannot 
suddenly arise for e = 0. Hence, the difficulty must also be present for q~ 
(e:~0), even though '~'~ has no nodal surfaces. Indeed, one might guess 
what happens for e close to zero and 9~ "almost  vanishing" at r = r 0. T h e  
average time needed for the Brown-Nelson  particle to pass accidentally 
from the domain r > r  o to r < r  o (or conversely) then becomes very large. 
For e ~ 0  this time tends to infinity. Assuming now that the wave function 
reflects a finite interval of the past history of the particle, one sees that for 
e small enough the wave ,I,; cannot be "constructed" out of the particle 
memories. Indeed, if only the average time needed for an accidental 
transition between two parts of ~t'~ (relaxation time) exceeds the length of 
the particle memory, there must occur a "spontaneous reduction" of the 
wave packet: for various random trajectories, various parts of ~I'~ will be 
"dying out" because of not being visited frequently enough. Hence, the 
assumption that the random trajectory "imitates" a wave packet ~ can be 
self-contradictory even if 'I ' ,  has no nodal surfaces. 2 

The difficulty above becomes even more essential if one takes into 
account that the nodal (or "almost  nodal") surfaces of 'P may be due not 
to an exceptional form of a particular solution (easily perturbed) but to 
some external conditions (material obstacles, potential barriers). As an 
example consider an electron wave xI, propagating inside of a tube. Assume 
that the tube has a partition inside (cf. Figure 2) which splits the wave q' 
into two separately traveling components 't" 1 and xI' 2. Near  the end of the 
tube the partition ends up and xI" 1 and ~t' 2 join again. Now, if the partition 
is long enough and the expected time which the material point must spend 
on one of the sides is longer than the memory,  one of the components ' t '  l 
and xI' 2 must vanish and, contrary to the predictions of quantum 
mechanics, there should be no interference between 'Is I and xt' 2 at the end 
of the tube in Figure 2. It  is thus seen, that even the introduction of a 
(finite) memory does not allow the trajectory interpretation to describe 

2It may be, however, that the failure to reproduce the orthodox quantum mechanics at this 
point is an advantage of Nelson's scheme (in its trajectory interpretation). It cannot be 
excluded that we are near here to a theory which would be able to describe simultaneously 
the wavelike propagation and the reduction of the wave packet (the measurement process). 
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properly the o r thodox  q u a n t u m  mechanical  interference effects. 3 Though  it 
is already out of the original Nelson  theory it is worthwhile to notice that  
the difficulty above would deepen in any at tempt  to extend the pure 
point-particle interpretat ion to describe relativistic quanta  like Dirac elec- 
trons or Maxwell photons.  In  fact, in a relativistic theory one can have a 
wave packet  ,I" composed  of  two space-separated parts 'I" 1 and  '1' 2 (,Is--'t"1 
+ if'z) which remains space separated for some time, even without  any  
external potential  (Figure 3). 

Suppose now, that one tries to find out  a relativistic analog of the 
B r o w n - N e l s o n  mot ion  (cf. Lehr  and Park, 1977) which would  imitate the 
behavior  of such a packet  'Is. Then,  one immediately runs into a difficulty 
of the Albeverio and H o e g h - K r o h n  type. Except  if one assumes the 
possibility o f  discontinuous trajectories (which already falls outside of the 
B r o w n - N e l s o n  type of theory) the particle cannot  oscillate in between 

TIME 

~2 

Fig. 3. 

SPACE 

3There remains a possibility of an infinite memory, which would, however, involve mathe- 
matical difficulties. It seems, moreover, that for physically reasonable equations of motion 
with memory there must be some memory cutoff ascertaining that the far past has a 
vanishing influence on the actual particle motion. 
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the two components of "I' (since with probability 1 it cannot cross surfaces 
where ,t'--0). The motion which started in one of the components must 
therefore continue (with probability 1) in the same component: hence, the 
particle trajectory can either "paint" only ,t'l(s t) in the space-time [leav- 
ing Xltz(.~,t ) nonexistent] or only ~2(~',t) [leaving "~l(s absent]. Con- 
sistently, there should be no interference between ,t,~ (~, t) and xIt2(.~ , t) at 
any later time. An example of this situation is obtained by considering a 
linearly polarized light beam (or light pulse) • which is decomposed by a 
crystal of tourmaline into two subbeams $ and ~ corresponding to two 
perpendicular polarization planes (cf. Figure 4a). Then except if one 
assumes a radical hypothesis about a material point particle performing 
some tachyonic jumps between the two propagation branches, there is no 
possibility that the single random trajectory might construct in space-time 
the two beams $ and ~-~. Hence, if one insists on the trajectory interpreta- 
tion (A) one again ends up with the conclusion of a "spontaneous reduc- 
tion" of the wave packet: each single act of propagation must choose one 
of the propagation branches leaving the other branch empty. Consistently, 
there should be no further interference between the outgoing polarized 
beams in Figure 4b. However, the experiments show that, in agreement 
with orthodox quantum theory, there is an interference. The polarized light 
cannot only be decomposed but it can also be unified again, and it then 
reproduces the original pure state of skew polarization • instead of forming 
the polarization mixture. One might still object, that the perfect space 
separation of the two components $ and ~ cannot be achieved in practice, 
and therefore, the danger of spontaneous reduction does not occur in 
reality. However, it is not so. In the relativistic wave dynamics the 
existence' of sharply limited wave packets, without asymptotically vanish- 
ing tails, is a natural phenomenon and the assumption about the com- 
pletely space-separated photon beams, in spite of all the diffraction effects 
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is a correct type of idealization. One might again try to save the trajectory 
interpretation by arguing that each single "classical point particle," 
although it chooses only one of the propagation branches, conserves 
nevertheless a "memory"  of the branching point, and this memory helps it 
to become a "skew polarized photon" at the end of the experiment in 
Figure 4. However, this cannot be an explanation. The final result of the 
interference experiment in Figure 4 is not only determined by the proper- 
ties of the branching point. It essentially depends on the whole rest of both 
propagation branches. By cutting or modifying one of them (e.g., by 
removing one of the mirrors in Figure 4) one immediately affects the final 
phenomenon. Hence, not even the existence of a long-term memory can 
explain the interference experiment. To describe the experiment in terms of 
a classical point we would have to introduce a nonlocal theory with a 
hypothetical trajectory which would be "aware" not only of its own past 
but also of its lost alternatives. Hence, by insisting up to the very end on 
the trajectory interpretation we would be left with a highly abstract 
interpretation of Nelson's scheme based on virtual trajectories, as far from 
any classical model as the present day quantum mechanics. The difficulty 
which we meet here is not exclusive for Nelson's theory, but is common for 
all hidden-parameter schemes operating with classical trajectories. The 
motion of a classical point-particle conditioned locally by the external poten- 
tial cannot imitate the quantum mechanical interference effects, no matter 
whether this motion is strictly deterministic or stochastic with or without 
memory. This simple difficulty is deeper and more persistent than all 
known versions of the theorem of von Neumann (1955) about the nonex- 
istence of hidden parameters. We can only wonder why so many authors 
fight so hard with the "paper tiger" of von Neumann's  theorem that they 
finally forget about the central difficulty: the one that lies in the inter- 
ference phenomenon. We conclude that interpretation (A) cannot hold. 

4. I N C O M P L E T E N E S S  OF T H E  FIELD INTERPRETATION 

There is now little choice: we have to examine interpretation (B). 
Maybe the wave ,I, is not the stochastic motion itself? Perhaps it has an 
independent existence as a physical field and may not vanish even in the 
space domains which are never crossed by the random trajectory? This 
would mean that the true physical object behind the Nelson formalism is 
not precisely a point particle but a more involved entity: a "stochastic 
point" plus the "piloting field" q'. This, of course, would justify the 
appearance of both Y(to) and xt'(Y, to) in the description of the system state. 
Moreover, this would allow an explanation of the interference effects. 
Indeed, in the frame of interpretation (B) it brings no  difficulty to assume 
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that xI' is composed of two space-separated parts and that the point particle 
propagates exclusively in one of them. The other part of 'I', though devoid 
of the "material point," does nevertheless :exist and whenever unified with 
the rest of ,I, it can again influence the further propagation of the point. 
(This is, incidentally, the main advantages of the "pilot wave" variant of 
the hidden-parameter schemes.) It thus looks as if we here arrive at the 
ultimate physical meaning of the theorem of Albeverio and Hoegh-Krohn 
(1974): this theorem precisely signifies that the Nelson formalism can 
describe the interference phenomena only at the cost of considering 'I'(Y, t) 
to be a physical field. Formally, this makes Nelson's theory a member of a 
wider family of hidden-parameter schemes operating with superpotentials 
and a close relative of a former idea of Bohm (1952a, b). In fact, the 
difference turns out to be technical rather than fundamental: because 
Nelson (1966) can now be interpreted as a stochastic variant of Bohm 
(1952a, b). The price of the reinterpretation, however, is that now the 
scheme starts to exhibit some physical incompleteness which might also be 
found in other specimens of the superpotential theory. 

First of all, it now becomes even more disquieting that the physical 
effects in Nelson's theory are discussed exclusively for the "equilibrium 
states," where the information about the position of the material point 
inside the wave ~t' is lost and the probability distribution for the random 
variable s becomes p = ['t'l 2. If 'P(2, t) and s are independent degrees 
of freedom, the nonequilibrium states are also essential,'ke., states where 
the information about the classical point was either not completely lost or 
was partly recovered. In fact, this is precisely the starting point of Nelson 
himself, who introduces a microstate with a general 'I'(Y, to), but at the 
same time with a sharply defined ~(t0) (corresponding to a &like distribu- 
tion p). The next natural step would be to consider a general non- 
equilibrium state where the probability distribution p(,g,t) is no longer 
6-like but has not yet become identical with I'I'(~, 0] 2. The statistics of such 
states would, of course, lead out of the orthodox quantum mechanics. We 
thus see that even in the frame of interpretation (B) the assertion about the 
equivalence of the Nelson scheme to the orthodox quantum mechanics has 
a limited validity: it means that we decide to neglect a priori the non- 
equilibrium phenomena and the relaxation times. Similar problems have 
been discussed by, e.g., Bohm (1952a, b, 1953) and Bohm and Vigier 
(1954). 

Interpretation (B), however, shows an even more fundamental incom- 
pleteness. If one assumes that "It is a physical field, then one must notice 
that the interaction between the "classical point" and the field 'Is is strictly 
one-sided. The random trajectory Y(t) is governed by the field qt (via the 
fields of drift and osmotic velocities). However, the field ,Ir does not 
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depend on the random trajectory: it is conditioned exclusively by the 
external potential V(s t). When the wave ,t' divides into several parts, all 
these parts propagate according to the same law (the Schr6dinger equa- 
tion) no matter which one of them contains the stochastic point. This 
suggests that we can as well remove the "point particle" completely. The 
pilot wave ,P (as it possesses an independent physical reality) will neverthe- 
less exist and will further propagate according to the same Schr6dinger 
equation. This is perhaps one of the most disquieting conclusions from the 
theories of the Bohm type. Indeed, there is nothing in these theories that 
prevents the system of pilot wave and point particle from being split so 
that we could have the pilot wave without the particle inside and the point 
particle without the piloting wave. This would, however, be a too simple 
solution of the old dilemma of wave-particle duality. Do we indeed have 
to believe in the existence of a wavelike ghost of a microsysteln devoid of 
the microsystem itself? Conversely, what happens if we capture the particle 
and let the wave ,I' "evaporate" to infinity? Can we obtain a "pure" 
corpuscle without the accompanying wave4? One might object, that we are 
here asking too artificial questions trying to carry to an extreme the "to the 
letter" understanding of the theory. However, noblesse oblige: if the theory 
is classical it should support the attempts of literal understanding. 

One might still think about improving the completeness of the scheme 
by adding some more physical mechanisms. Thus, one could assume that, 
since the material point is governed by the ,t, field, then consistently, it 
may be captured only with the help of the ,t, field. This leads to the idea 
that the Schr6dinger propagation equation for 't' is only an approximate 
law, to be supplemented by some nonlinear wave mechanics which would 
make the field ,lg shrink from time to time: and only when the wave q' 
shrinks to a droplet, can the point particle inside be considered to be  
"captured." However, the completion of Schr6dinger's wave mechanics in 
that direction would, in itself, be a completely new step of the theory, far 
more important than all previous hidden-parameter schemes. Moreover, it 
would make the whole aspect of Brownian motion irrelevant: because then 
the role of the "stochastic point" would be reduced to that of a dust 
particle circulating passively in the ,t' field and unnecessary even to explain 
the localization experiments. As a result, the part of the theory concerning 
the "Brownian motion" could be removed by Occam's razor and we would 
be left with a certain realistic interpretation of '!,, with all its immanent 

4Bohm (1952a, b, 1953) is aware of the dangers of the field interpretation and tries to 
neutralize them by assuming that each particle has its own 'I" field which is not perceived by 
the other particles of the same kind. This assumption, however, is not less artificial than the 
theory with "'ghost waves." 
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difficult ies which, once upon  a time, have been  raised agains t  a f ield 
in te rpre ta t ion  b y  Schr6dinger  ( Jammer ,  1966). W e  thus conc lude  that  no 
consis tent  classical equiva lent  of the o r thodox  q u a n t u m  mechanics  has  
been  offered in N e l s o n  (1966). Paradoxa l ly ,  we feel ent i t led  to quote  
Ne l son  (1967) agains t  N e l s o n  (1966) himself :  "Some theories,  though 
ma themat i ca l ly  correct ,  can be phys ica l ly  wrong."  Concern ing  the 
s tochast ic  theory in Ne l son  (1966), if not  phys ica l ly  wrong,  it  is at  least  
phys ica l ly  absent .  This  makes  the fol lowing ques t ion  even more  intr iguing:  
wha t  precisely is the Ne l son  scheme? Is it  on ly  a formal  art? Or, perhaps ,  
an  emerging f ragment  of a ye t  und i scovered  theory? 
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